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The largest component (“the leader”) in evolving random structures

often exhibits universal statistical properties. This phenomenon is

demonstrated analytically for two ubiquitous structures: random

trees and random graphs. In both cases, lead changes are rare as

the average number of lead changes increases quadratically with log-

arithm of the system size. As a function of time, the number of lead

changes is self-similar. Additionally, the probability that no lead

change ever occurs decays exponentially with the average number of

lead changes.
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Problem

An ensemble of random growing trees (RT) or random growing

graphs (RG), starting from N nodes.

Questions

• What is the size of the leader, i.e., the largest component l(t, N)?

• What is the number of lead changes L(t, N) as a function of

time t and system size N?

• What is the number of total lead changes L(N) as a function of

system size?

Motivation

• Data storage algorithms in computer science (RT) [1,2].

• Collision processes in gases (RT) [3].

• Random networks (RG) [4,5].

• Polymerization and Gelation (RG) [6].



Random Trees

FIG. 1. Illustration of the tree merger process with system size N = 4.

• Start with N single-leaf trees.

• Pick two trees at random and merge them.

Size Distribution

• Distribution of component of size k at time t is ck(t)

• Rate Equation

d

dt
ck =

∑

i+j=k
cicj − 2cck

• Solution subject to initial condition ck(0) = δk,0.

ck(t) =
tk−1

(1 + t)k+1

• Exponential scaling distribution (asymptotically)

ck(t) ' k−2
∗ Φ(k/k∗), Φ(x) = e−x

• Typical size: k∗ ∼ t.



Leadership Statistics

• Leader Size l(t, N): Obtain leader size from cumulative dis-

tribution uk = N
∑∞

j=k ck using ul = 1. Asymptotically,

l ' t ln
N

t
.

• Number of lead changes L(t, N): Obtain the rate by which

the leader is surpassed from the rate of change in the cumulative

distribution d
dtL = d

dtuk|k=l.

L(t, N) ' ln t lnN −
1

2
(ln t)2.

• Unusual scaling form: involves scaling function F (x) =

x− 1
2x

2.

L(t, N) = (lnN)2 F (x), x =
ln t

lnN
=

ln k∗
lnN

• Total number of lead changes L(N): is obtained by noting

that the condensation time, the time to form a single tree of size

N is simply tf ' N . Using x = 1,

L(N) ' A(lnN) A =
1

2
.



Numerical Simulations
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FIG. 2. The normalized time dependence of the number of lead changes for random trees,

L(t, N)/L(N), versus the scaling variable x = ln t/ ln N . The simulation data, representing an

average over 103 Monte Carlo runs, is compared with the theoretical prediction 2F (x) = 2x− x2.
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FIG. 3. The total number of lead changes L(N) versus the system size N . Shown are simula-

tion results for Random Trees (RT) and Random Graphs (RG) representing an average over 104

realizations.



Distribution of number of lead changes

• The probability Pn(t, N) that there are n lead changes at time

t is Poissonian (assuming no correlations build up). Thus, it is

characterized by the average number of lead changes L(t, n).

Pn(t, N) =
[L(t, N)]n

n!
e−L(t,N).

• The survival probability of the first leader S(t), the probability

that the initial leader is never overtaken, equals P0(t, N)

S(N) = exp[−L] ' exp
[

−A(lnN)2
]

.
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FIG. 4. The survival probability of the initial leader S(N) versus the system size N . The number

of realizations was 1010 and 108 for random trees and random graphs, respectively.



Random Graphs

FIG. 5. Illustration of the random graph growth process.

• Start with N single-node graphs.

• Pick two nodes at random and merge their respective graphs.

Size Distribution

• Distribution of components of size k at time t, is ck(t), satisfies

the rate equation d
dtck = 1

2

∑

i+j=k ijcicj − kck

• Solution subject to initial condition ck(0) = δk,0

ck(t) =
(kt)k−1

k · k!
e−kt

• Scaling distribution (asymptotic)

ck(t) ' k−5/2
∗ Φ(k/k∗), Φ(x) ∝ x−5/2e−x/2.

• Gelation time: 1− tg ∼ N−1/3

• Typical size: k∗ ∼ (1− t)−2 as t→ 1; Giant comp. size ∼ N 2/3



Leadership Statistics

• Obtained from size distribution as in the random tree case.

• Leader size l(t, N):

l '
2

(1− t)2
ln[N(1 − t)3].

• Number of lead changes L(t, N):

L(t, N) ' 2 lnN ln
1

1− t
− 3



ln
1

1− t





2

.

• Unusual scaling form: involves F (x) = 2x− 3x2.

L(t, N) ' (lnN)2 F (x), x =
ln 1

1−t

lnN
=

1

2

ln k∗
lnN

• Total number of lead changes L(N):

Obtained from 1− tg ∼ N−1/3 or x = 1/2

L(N) ' A(lnN) A =
1

3
.

• Probability no lead change occurs:

S(N) ' exp[−
1

3
(lnN)2]



Conclusions

• Similar laws characterize random trees and random graphs.

• Lead changes are rare, their total number grows as (lnN)2.

• Unusual scaling behavior, with scaling variable ln k∗/ lnN .

• Probability no lead change occur decays as exp[−A(lnN)2].
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